新闻中心

N
ews

观点|教育大数据的实践正途

2019-02-19点击:2373

现代教育必然是数据驱动的,而非纯粹经验主义的实践。所谓数据驱动,是指在理论观照下依据实情数据(而非仅仅感觉经验)而采取与理论和数据相一致的职业行动的方式。数据驱动比经验主义更具理性。


数据驱动相对容易,有理论、有数据即可。但是将数据驱动升级为大数据驱动,那只能是Educology教育学理论完整观照实践的结果:以教育系统的设计、开发、实施和调节为核心内容的完整的信息化教育实践,它是一种设计与分析相统一的教育实践,其自然的结果就是因材施教。


完整的教育系统既是设计出来的,又是行动的结果。但不存在一种千秋万代的理想系统,教育系统必须与时俱进,与它自身的环境协同进化。所谓进化,对于教育系统来说就是改进设计、调整行动。改进设计的前提是理解,理解教育系统的现实表现。但细致地理解教育本身是一个难题,因为教育历时长、信息量大。我们不能只是关注结果,诸如分数、升学率等,这些结果远远不能代表教育自身。理解教育需要着眼于真实发生的教育过程。理解离不开分析,通过梳理细节数据,整理出更高层次的真相。也只有依据这种分析出来的实情数据,改进性设计才能够增强教育系统功能的确定性、提高教育系统的适应性,适应性即因材施教。


历史经验表明,为了因材施教而设计开发大而全的学习产品是得不偿失的,不但功能难以实现,而且初期成本和后期维护成本都居高不下。也就是说,单个学习产品内部完全的因材施教是难以奏效的。正确的做法是利用教育众筹机制,开发大量的、功能各异、风格各异的学习产品,让个性化产品的总体丰富性与学习者个性差异的丰富性建立关联。对于某个具体的产品来说,它不需要精确地对学生进行分类,只需做到能满足某类学生某个特定需求即可。当学习产品的丰富性足够大时,学生经过短时间的有限尝试,就可以选择到自己满意的学习产品。这才是因材施教的正途。这种因材施教的学习产品集合是经年累月的结果,是协同进化的结果,绝不是一朝一夕的精明决策的结果。


因材施教不是一种产品功能,而是一种效应。因材施教的关键不在于对个体的精准感知,而在于教育自身的可选择性。所以因材施教可以在教育组织内部表现为课程和教学系统的可选择性,也可以表现为教育组织之间的理性择校。这里,理性择校的标准不是升学率,而是教育组织的服务质量和特色。一个教育组织的服务质量就是指将某个设计态教育系统转化为与其一致的活动态教育系统的能力水平。一个教育组织的服务特色就是指将设计态教育系统转化为活动态时的独特性。


无论是教育系统的改进性设计,还是特定功能学习产品的开发需求,抑或是确认教育组织的能力和特色,都需要真实的、完整的教育系统的分析,这种分析是一种一致性分析,关注活动态教育系统与设计态教育系统的一致性,关注教育组织之间的一致性,在不一致之处寻觅教育系统的缺陷、教育组织的能力短板以及教育组织的特色。教育系统是多层次复杂适应系统,又涉及设计态和活动态,对于它的分析包括课程、知识组件、教学方案、真实教学活动以及学习产品的真实运转过程等从宏观到微观多个层次,活动的教育系统自然又是分布式存在的。可见,这种分析只能是大数据的。教育系统的改进和调试从何处着手、优先处理何处以及如何调整等问题,只有依赖这种大数据分析,才能区分哪些缺陷是意外偶发,哪些是隐含的必然。

本文来源:《电化教育研究》杂志,作者:杨开城。